

2004–2005 Google Computer Science Clinic

Differential Test Coverage Analysis Differential Test Coverage Analysis
in the Context of the Wine Projectin the Context of the Wine Project

Background
Google’s mission is to organize the world’s data and make
it easier to access. While primarily known for its web
search engine, Google provides desktop applications as
well, including Picasa (image management), Hello! (blog
image management), Keyhole (satellite map search) and
Google Desktop Search (PC search engine).

While these programs currently run in Windows, Google
would like to make them available on as many platforms as
possible. For this project, Google is particularly interested
in Linux. They are exploring an open source Windows
translation layer for Linux called Wine. This approach
avoids both the cost of porting their applications to Linux
and the performance overhead of using a Windows
emulator under Linux.

What is Wine?
Wine (www.winehq.com) is an open-source project that
runs under Linux. It provides a translation layer that sits
between an application and the operating system. This
layer intercepts Windows function calls and seamlessly
provides similar functionality using Linux-based alternatives
(Fig. 1).

What is Wrong With Wine?
There are a variety of factors that make Wine’s objective
difficult to achieve.

Windows is a moving target. There have been a number of
releases of Windows since Wine first began, including new
APIs such as DirectX and .NET. Wine attempts to maintain
compatibility with all versions of Windows starting with
DOS/Windows 3.1 through today’s Windows XP.

Wine is an open source project that relies on volunteer
developers. Features are implemented at the developers’
prerogatives so functionality that is either difficult or
uninteresting is often ignored. Testing of the code base is
often inadequate.

GCOV/LCOV
GCOV is an open source code coverage utility that works in
conjunction with the GNU gcc compiler to track the lines of
program code executed at run-time. LCOV is a postprocessor
to GCOV, designed to make coverage output more intuitive and
manageable for large, complicated projects (Fig. 3).

We have added GCOV support to Wine, and we have
enhanced LCOV to support differential code coverage analysis
(Fig. 4).

Fig 2. The red section represents the portion of Wine that is used by
the application but not tested by the test suite, which is easily
identified using our new differential code coverage tool.

Deliverables
Submitted code coverage support to Wine

Submitted differential code coverage support to LCOV

Submitted sample CXtest package for Picasa

Submitted Wine unit tests for LZExpand and AdvApi32

Authored automated Wine coverage script

Final Report

All submissions were accepted by their respective open
source projects.

Acknowledgments
Liaisons: Dan Kegel

Faculty Advisor: Prof. Elizabeth ‘Z’ Sweedyk

Team Members: Cal Pierog (Project Manager), Aaron
Arvey, Edward Kim, Evan Parry

Fig. 1: Windows Applications send
instructions which are intercepted
by Wine. Wine passes these
instructions to Linux, and returns
the results to the application.

Project Goals
Since Wine is a large and complicated open source project, it
is difficult to debug. Our project aims to develop methods for
identifying untested portions of Wine used by an application.
Specifically, our task was to build a differential code coverage
tool, use it to diagnose untested areas of Wine used by Google
apps, and write tests for those areas.

Wine Test Suite
Wine has a built-in test infrastructure that serves two distinct
purposes. First, the tests are used to certify that Wine and
Windows behave consistently. Second, the tests are used to
make sure that new functionality does not introduce bugs into
existing code, a process called regression testing.

Code Coverage
In order to identify untested portions of code, we developed
tools to analyze the portions of Wine’s source code that are
used during a program’s execution. We incorporated existing
open source code coverage utilities into the Wine test
infrastructure. These utilities compare the current coverage of
the test suite with the code executed by specific application
with specific user input.

Using this tool we expected to be able to identify untested
portions of Wine code that are most likely to contain bugs.

Differential Code Coverage
Differential code coverage analysis is a term used to describe
the comparison of the code coverage of an application to the
code coverage of the Wine test suite. Our tools are designed to
quickly and easily highlight these differences in coverage (Fig.
2).

Fig. 4c. Differential code coverage from our enhanced
LCOV comparing the Wine source code profiled under
Google’s Picasa against Wine’s test suite.

CXtest
CXtest (www.cxtest.org) is an open source package for
scripting fully automated GUI tests for Windows apps running
under Wine. We created a test script using CXtest that installs
Picasa. This test is now part of the standard CXtest package,
which is used by the Wine developers for automated
regression testing.

Fig. 3. Sample code coverage from LCOV of Wine’s test
suite. The directory level of output makes large
projects manageable.

Coverage-Driven Tests
With our additions to Wine and LCOV, developers can
discover untested portions of Wine’s code that are used by
an application. These regions may be more likely to contain
errors. The developer can then write tests specifically
targeted at these untested regions. This has the potential to
speed Wine development.

The flow chart below (Fig. 5) illustrates this process of
coverage-directed test writing. Using our own process, we
have identified two libraries, shell32 and ntdll, that are used
by Picasa but are insufficiently tested.

Fig. 4a. Code
coverage from
LCOV of Google’s
Picasa.

Fig. 4b. Code
coverage from
LCOV of Wine’s test
suite.

Automated Coverage
We also created a script that automates the generation of
code coverage for Wine as well as differential code coverage
comparing Picasa and the Wine test suite.

Fig. 5 The Wine testing process after our additions.

Wine Test
Suite

WinePatch Wine

Create Test
Detect Bug

Differential
Coverage

Google
Application

